
pybela: a Python library to interface scientific and physical
computing

Teresa Pelinski
Centre for Digital Music

Queen Mary University of London
London, UK

t.pelinskiramos@qmul.ac.uk

Giulio Moro
Augmented Instruments Ltd

London, UK
giulio@bela.io

Andrew McPherson
Dyson School of Design

Engineering
Imperial College London

London, UK
andrew.mcpherson@imperial.ac.uk

Abstract

Workflows to obtain, examine and prototype with sensor
data often involve a back and forth between environments,
platforms and programming languages. Usually, sensors
are connected to physical computing platforms, and so-
lutions to transmit data to the computer often rely on
low-bandwidth communicating channels. It is not obvious
how to interface physical computing platforms with data
science environments, which also operate under distinct
constraints and programming styles. We introduce pybela,
a Python library that facilitates real-time, high-bandwidth,
bidirectional data streaming between the Bela embedded
computing platform and Python, bridging the gap between
physical computing environments and data-driven work-
flows. In this paper, we outline its design, implementation
and applications, including deep learning examples.

Keywords

prototyping, Bela, physical computing, workflows, Python,
machine learning, deep learning, embedded AI

1 Introduction

Sensing interaction and the physical environment is central
to fields like interactive media, wearable technology, or
home automation. Sensors transmit information from the
physical world into the digital domain, however they may
not relay this information as transparently as expected:
signals can be noisy or inconsistent. Often, they need sig-
nificant observation, shaping and moulding before they
are suitable for use in an interactive context. This process
can require considerable trial and error, and sometimes,
complex mapping strategies or numerical systems such as
neural networks.

Workflows to obtain, examine and prototype with sensor
data often entail back and forth between environments,
platforms and programming languages. Moreover, particu-
larly in maker and arts-technology communities, workflows
may involve low-bandwidth solutions such as streaming
data from a microcontroller to a computer over a USB-
serial link. Alternatively, approaches based on logging data
on an embedded computing platform face problems of lim-
ited storage and inconvenience transferring large files to

This work is licensed under a Creative Commons Attribution 4.0
International License.

NIME ’25, June 24–27, 2025, Canberra, Australia

© 2025 Copyright held by the owner/author(s).

the computer for analysis. If running the scientific comput-
ing code in an embedded computer such as Raspberry Pi
or Bela, users might face slow processing times given the
limited CPU performance of low-resource platforms.

To address these issues related to workflow complex-
ity and low bandwidth, we present pybela. pybela facili-
tates both data collection and monitoring, as well as bi-
directional real-time data streaming between Bela [18] and
a computer1. The pybela API allows requesting data from
–and sending data to– Bela interactively in Python, with
great flexibility over what, when and how data is sent. py-
bela can be used for data collection (e.g., collecting training
data for a deep learning model, debugging and calibrating
sensors, capturing data during a user study) but also for
streaming data back and forth between platform and com-
puter (e.g. sending control data, running a deep learning
model in a desktop computer on sensor data, and sending
the output back to Bela for further processing).

By integrating physical computing (Bela embedded plat-
form) with data science workflows (Python and Jupyter
notebooks running on a computer), pybela attempts to
bridge (“plug” [21]) two communities with distinct prior-
ities and code practices: real-time vs. non real-time, low-
resourced vs. computationally intensive, compiled vs. in-
terpreted. Our goal is not to create an audio streaming
environment with the lowest possible latency, a goal which
could be better served through existent professional au-
dio interfaces. Instead, the idea is to bridge two disparate
communities by empowering them to map their knowledge
into a new domain [21] while respecting their preexistent
workflows. Alternatively, pybela can also be used in an
educational setting to introduce students to physical com-
puting with a more beginner-friendly language, Python,
than C++.

A natural extension of bridging physical computing with
data science environments is to train and run deep learning
models on sensor signals. Along with the library2 and
its documentation3, we provide a set of examples and
tutorials4 to run models either on Bela or on the computer
(while streaming data back-and-forth with Bela). We also
contribute a cross-compilation environment to speed-up
compilation of Bela programs, as well as pre-built binaries
for Bela of the most common C++ inference frameworks
(Torch, ONNXRuntime, TensorFlow Lite). This aligns with

1In this paper we use “computer” to refer to a desktop or laptop per-
sonal computer with a GUI, as opposed to a low-powered embedded
computer platform.
2https://github.com/BelaPlatform/pybela
3https://belaplatform.github.io/pybela/
4https://github.com/pelinski/deep-learning-for-bela

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/BelaPlatform/pybela
https://belaplatform.github.io/pybela/
https://github.com/pelinski/deep-learning-for-bela

NIME ’25, June 24–27, 2025, Canberra, Australia Pelinski, Moro and McPherson

the growing interest towards embedded AI, particularly
in musical performance [11, 23, 31], forms of music AI
beyond audio (e.g. using gesture data) [9, 27], as well as
prototyping with machine learning models [3, 28].

2 Background

In this section we provide some context to the issues pybela
attempts to address, as well as a summary of previous work
and existent tools.

2.1 Fragmented prototyping

2.1.1 Different prototyping models. The ease of prototyp-
ing is central to both physical computing platforms and
data science environments. Physical computing platforms
such as Arduino or Bela facilitate tinkering with electronics
by abstracting the complexities of compilation (through an
IDE), offering GPIO ports, APIs that facilitate interfacing
with peripherals, and supportive online communities [21].
However, given their limited computational resources and
often stringent real-time requirements, physical computing
environments are typically based on C++, which is usually
the choice in performance-critical applications as it allows
manual control over memory allocation. This memory con-
trol can be challenging for beginners and medium-skilled
programmers, which along with compilation times, can
obstruct the prototyping flow. Alternatively, in the micro-
controller domain, MicroPython5 and CircuitPython6 are
Python flavours designed to run directly on the hardware,
however they offer a less optimised performance and limited
interaction during runtime. On the other hand, data science
environments such as Python Jupyter notebooks, allow run-
ning code snippets interactively while preserving the state
between runs. Along with the fact that Python does not
require compilation, and that it is a higher-level program-
ming language with a large catalogue of libraries, Jupyter
notebooks facilitate quick and dynamic prototyping with
data. However, in terms of efficiency, as an interpreted lan-
guage with automatic memory allocation, Python generally
has a slower execution time than C++.

2.1.2 Viscous workflows. When building digital artefacts
in creative environments, technologists will often emphasise
speed and ease of development to enable smooth prototyp-
ing [6]. In particular, Blackwell and Green use the term
“viscosity” to refer to the number of actions it takes to ac-
complish a goal in programming [4]. In this sense, workflows
to process sensor signals in data science environments can
be viscous. Generally, sensors are connected to embedded
platforms that often run in C++, which complicates access-
ing data interactively during runtime. A common workflow
to obtain and process data is therefore to write the data
into a file on the embedded platform, and then, from the
computer, to copy this file through the terminal, and parse
it and handle it in a Python environment. Other options
include streaming data over USB serial (e.g. on an Arduino
microcontroller), an option which offers poor bandwidth
and timing resolution, or running Python directly on the
board on higher-spec platforms such as Bela or Raspberry
Pi – but still face slow processing times given their limited

5https://micropython.org/ [accessed 02/02/2025]
6https://circuitpython.org/ [accessed 27/01/2025]

CPU capacity. There are indeed many options to transmit
data from the embedded platform to the data science envi-
ronment, yet they often involve low-bandwidth solutions
and a back and forth between platforms, programming
languages and environments.

2.1.3 Toolchain gaps in Embedded AI. An obvious applica-
tion of combining physical computing with data science is
to train and run deep learning models on real-time sensor
data. However, running neural networks in real-time physi-
cal computing environments can be complex [22], although
there are a few examples in digital musical instrument
design [11, 16, 31]. The limited resources of physical com-
puting platforms complicate training and running neural
network models in real-time on-device. Models are typi-
cally trained on the computer and then deployed either
on-device or run in the computer while streaming data
back and forth with the embedded platform. Running mod-
els on-device involves compiling deep learning inference
engines (e.g. Torch, ONNX, TFLite) for the platform of
choice, which will generally require cross-compilation on
the computer. It also may involve knowledge of compilation
software such as CMake or Makefile – skills which are quite
advanced for a beginner or mid-level physical computing or
data science practitioner. Moreover, the real-time reliability
of these inference engines has been questioned (due to e.g.
issues with dynamic memory allocation) [8, 25], although
significant improvements are being made to ensure it [1].
Alternatively, the model can be run on the computer, how-
ever there is no evident high-bandwidth option to stream
the data back and forth between the computer and the
embedded platform.

2.2 Previous work and existent tools

2.2.1 Improvement over previous pipeline. We addressed
some of these issues related to integrating physical com-
puting and data-intensive approaches (in particular, neural
networks) in a previous publication [22]. In this earlier
work, we presented a pipeline to record datasets, train
deep learning models and deploy them in Bela. Although
useful, that pipeline still involved significant back and forth
between platforms in the data capture step: the data files
were recorded in Bela and then manually transferred to
the computer. There was no direct communication between
Python and the Bela code, and hence no control from
Python as to what data was recorded, and when and how
it was sent.

pybela extends this work by enabling direct communica-
tion between Python and the code running in Bela, so that
from Python, the user can precisely control which data
and when is being sent, and how, e.g., at which sampling
frequency. Moreover, pybela adds a streaming path from
Python to Bela, which enables, for instance, outsourcing
computation of models which are too expensive to run in
Bela, or connecting to other software through e.g. another
Python API. We have also extended the aforementioned
pipeline with a flexible choice for inference engine, as we
now provide pre-built binaries for Torch and ONNXRun-
time besides TensorFlow Lite.

https://micropython.org/
https://circuitpython.org/

pybela: a Python library to interface scientific and physical computing NIME ’25, June 24–27, 2025, Canberra, Australia

2.2.2 Existent tools. If the purpose is to exclusively cap-
ture sensor data with high accuracy, scientific data acqui-
sition interfaces (e.g. NI mioDAQ7) offer high resolution
data collection as well as accompanying analysis software.
However, their price is high in comparison to physical
computing platforms, and they are not programmable em-
bedded computers that can be used in interactive contexts.
Alternatively, MicroPython and CircuitPython run on var-
ious microcontrollers and offer some limited interaction
with the code running in the microcontroller through a
REPL serial console8, as well as support for a variety of
sensors including Adafruit’s9. There also exist devices tar-
geting specifically data collection in physical computing
environments, such as a data logging shield for Arduino10

– however, its application is limited to offline data logging
to an SD card rather than dynamic control of when and
how the data is collected. Notably, an inspiration for the
pybela’s early development were the course materials by
Justin Bois for a Caltech course11 on building custom sci-
entific measuring instruments with Arduino, Python and
serial communication.

These microcontroller-based environments can offer a
real-time exchange of data with the computer; however,
they often rely on the serial protocol. In comparison to
network-based approaches (e.g. WebSockets running over
TCP), serial typically offers limited bandwidth and limited
assurances on data integrity as the connection is usually
one-directional.

2.2.3 Choice of platform. As opposed to the approaches
discussed above, pybela relies on the WebSocket protocol to
communicate with Bela, which offers bidirectional commu-
nication and several features to ensure message consistency.
In principle, pybela’s implementation could be ported to
any other platform with a network stack and enough CPU
and memory to run the Watcher server (the Watcher will
be introduced in Section 4.1), such as e.g. Raspberry Pi.
However, our choice of platform is determined by Bela’s
strong timestamping implementation, in which sensor or
audio signals are timestamped at the level of data capture
rather than when the data is received by the computer.
This allows, for instance, ensuring that data is sent and
processed in an orderly manner and in real-time, as well
as accurately measuring roundtrip latencies between Bela
and Python (see Section 5). In this sense, pybela leverages
Bela’s strong timestamping, as well as low-latency and
high-resolution sensing capabilities, since sensors are cap-
tured at audio rate [17, 18] – features which are critical in
a musical performance context. Porting to other platforms
would require, besides the technical specs outlined above,
at least a similar strong timestamping functionality.

7https://www.ni.com/en/shop/data-acquisition/miodaq-
devices.html [accessed 02/02/2025]
8https://learn.adafruit.com/welcome-to-circuitpython/the-repl [ac-
cessed 27/01/2025]
9https://learn.adafruit.com/welcome-to-circuitpython/beginner-
boards [accessed 27/01/2025]
10Arduino Data Logger Shield https://learn.adafruit.com/adafruit-
data-logger-shield/overview [accessed 27/01/2025]
11Caltech “Design and Construction of Biodevices” https://be189.
github.io/ [accessed 27/01/2025].

3 Features and modes of operation

We have outlined two main issues with the existent work-
flows to integrate physical computing and data science
environments: the back and forth between platforms, pro-
gramming languages and environments (the viscosity of
the workflow) and a low-bandwidth communication chan-
nel which prevents a real-time exchange of high-resolution
data. pybela attempts to address these issues through the
following design goals:

(1) Control how data is sent (at which sampling fre-
quency, in which format) and when (immediately or
at a point in the future, and for how long)

(2) Simple, beginner-friendly API that does not require
Python asynchronous programming knowledge

(3) Controls to start and stop the exchange of data can
be sent interactively from a Jupyter notebook (or
programmed in a Python script)

(4) Ensuring consistency in data and latency so that the
library is usable in a real-time scenario

Goals (2), (3) and (4) are related to the library imple-
mentation, which will be discussed in next section. Goal
(1) involves implementing the library flexibly and make
it suitable for several use cases, for instance continuous
streaming of data or sampling data at given intervals to
monitor sensor behaviour under changing conditions. To
address these various use cases we have implemented four
modes of operation: (a) streaming, to continuously send
data between Bela and Python, (b) monitor, to also send
data from Bela to Python but at given intervals, (c) log-
ging, to reliably log data to files and (d) controlling, to
force variables in the Bela code to take given values (sent
by Python). Tables 1 and 2 summarise the purpose, use
cases and functionality of each of these modalities. Detailed
tutorials for each of the pybela modes are available in the
pybela repository12.

For brevity, below we will use “Bela variables” to refer
to variables that have been defined in the Bela code and
that can be accessed and interacted with using pybela –
the technicalities which make this possible will be discussed
in next section. Variables can represent anything in the
Bela code: direct readings of sensor values, a processed
version of the signal, or whatever the user wants to define
(e.g. a boolean variable indicating if certain condition is
happening or not).

3.1 Stream

The streaming mode allows continuous streaming of data
between Bela and Python, in both directions. It allows
scheduling the streaming to happen at future timeframes
or requesting a specific number of data points. A more inter-
esting feature is the ability to set callbacks to be run every
time a buffer of data is received in Python. The callback
can also be set for a “block” or packet of buffers, so that
rather than running the callback per buffer received per
Bela variable, the callback is called once the buffers of all
variables (for a given timestamp) are received. The stream-
ing mode ensures that the buffers are processed in order
and with real-time guarantees. Moreover, the streaming

12https://github.com/pelinski/pybela/tree/main/tutorials/
notebooks

https://www.ni.com/en/shop/data-acquisition/miodaq-devices.html
https://www.ni.com/en/shop/data-acquisition/miodaq-devices.html
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/beginner-boards
https://learn.adafruit.com/welcome-to-circuitpython/beginner-boards
https://learn.adafruit.com/adafruit-data-logger-shield/overview
https://learn.adafruit.com/adafruit-data-logger-shield/overview
https://be189.github.io/
https://be189.github.io/
https://github.com/pelinski/pybela/tree/main/tutorials/notebooks
https://github.com/pelinski/pybela/tree/main/tutorials/notebooks

NIME ’25, June 24–27, 2025, Canberra, Australia Pelinski, Moro and McPherson

Streamer Monitor Logger Controller

Purpose
continuous streaming of
data between Bela and

Python

sampling values of
Bela variables

reliably recording
data locally in Bela

setting values of Bela
variables

Use case
example

performance with
real-time sensor data

sensor calibration dataset recording
sending control

values

Table 1: Purpose and use cases of pybela’s modes of operation

Streamer Monitor Logger Controller

Sending data
from Bela to
Python

✓

continuous stream
of data

✓

“sampled” stream
of data

✓

as binary files
✗

Sending data
from Python to
Bela

✓

continous stream
of data

✗ ✗
✓

forces a Bela variable to
take a given value

Saving data into a
file

✓

saved in a .txt file
on arrival to Python

✓

saved in a .txt file
on arrival to Python

✓

saved locally in binary
files in Bela, then

transferred to computer

✗

Calling a callback
function each
time a buffer of
data is received

✓ ✓ ✗ ✗

Table 2: Functionality of pybela’s modes of operation

mode allows sending buffers of data back to Bela. Addi-
tionally, the plotting method allows displaying the received
data in Python in real-time.

The streaming mode can be used to interface with sen-
sors from Python in real-time. The sensor data can be then
processed in Python and sent back to Bela (e.g. to control
an actuator) or to another software (e.g. MaxMSP). In
particular, the callback method can be used to run a deep
learning model (that might be too heavy to run directly
in Bela) and send the output back to Bela – an exam-
ple project is shown in Section 6.2. Datasets can also be
recorded with the streamer mode, although the logging
mode is a more reliable option in this case as it does not
depend on the status of the connection between Python
and Bela.

3.2 Monitor

In a typical scenario, the Bela variables correspond to sensor
signals sampled at audio rate in Bela. In certain situations,
however, such high sampling rates (44100 samples per
second) are not necessary. For instance, when trying to
find the range of operation of a sensor we might want to
try a certain condition (e.g. stretch a stretch sensor), get
a few values and then repeat with a different condition
(e.g. stretch sensor at rest). In these cases, a few values
per second suffice. The monitor mode works as a “sampled”
streaming mode, it streams data from Bela to Python at a

requested rate13. The monitor mode also allows to “peek”
at a variable value, that is, requesting a single value rather
than a continuous stream of data.

3.3 Log

Rather than streaming values from Bela to Python, the
logging mode writes the data into binary files locally on
Bela. This is to ensure that the data is recorded regardless of
the status of the communication between Bela and Python.
This is a safer option for recording datasets, the audio of a
performance, or sensitive data from a user study. Files are
saved in binary to save memory14. To avoid long transfer
times, by default the logging mode transfers the files as
they are being recorded. In the event of a connection error,
the transfer does not need to be restarted but can be
continued from the point it had been left at. Similarly to
the streaming mode, a logging session can be scheduled for
a particular time in the future.

3.4 Control

The control mode allows forcing a Bela variable to take a
value set from Python. If foo is a Bela variable which has
been assigned to the Bela audio input, regardless of what
the audio input is, with the control mode we can force foo
to take a given value. The variable will still hold that value

13In fact, the Monitor class is implemented as a child class of the
Streamer class.
14Storage requirements grow quickly when recording data at audio
rate. The Bela has just under 4GB of available memory, although it
can be extended with an SD card.

pybela: a Python library to interface scientific and physical computing NIME ’25, June 24–27, 2025, Canberra, Australia

regardless of what happens in the Bela code (i.e. even if it
gets assigned a new value in the code), up until the control
mode is disabled.

The control mode does not support sending buffers of
data from Python to Bela variables, it only supports setting
one value at a time for each Bela variable. It should be
noted that while the Streamer does support sending buffers
of data to the Bela code, it does not support setting or
forcing those values into Bela variables – “forcing” values
onto Bela variables is a functionality reserved to the control
mode15. The control mode can be used in a performance
context to send control values (e.g. parameters of a filter),
or in a debugging scenario in which we might want to force
certain conditions into the Bela code.

4 Architecture and implementation

How does pybela request and obtain data from Bela on
demand? The communication between a Bela C++ pro-
gram and pybela happens through the WebSocket protocol,
which establishes a bidirectional transmission channel over
a TCP connection. pybela acts as a client that sends re-
quests to and receives data from the Bela Watcher server.
The Watcher is a Bela C++ library16 that can be added
to any Bela C++ program. Variables declared in the Bela
code can be put on “watch”, and then be streamed, moni-
tored, logged or controlled, as requested by pybela. This
avoids having to rewrite and recompile the Bela project
each time the user wants to send data in a different mode.

Besides requesting the data, pybela needs to manage the
arrival and processing of data sent from the Watcher, which
involves asynchronous Python programming. In this section,
we discuss some relevant aspects of the implementation of
the Bela Watcher and pybela.

4.1 The Bela Watcher

To make the variables in the Bela code accessible to py-
bela, variables need to be defined as an instantiation of
the Watcher template class. The Watcher class wraps a
“watched variable” of a supported type (floating point and
integer numerical types up to 64 bit) and connects it with
the pybela API via a WebSocket. The Watcher set()

method sets the value of the watched variable and no-
tifies a WatcherManager instance of the update. The get()
method returns either the last value that was assigned
to the watched variable in the C++ code or a “control”
value set via the pybela API. To minimise the code changes
needed to move from using a native numeric type to us-
ing a Watcher object, the Watcher class also provides two
overloads (redefinitions):

(a) the assignment (=) operator calls set()
(b) the casting operator, called when accessing the value

of the variable, calls get()

Figure 1 shows an example of Bela C++ code before
and after adding the Watcher. An object of the Watcher-
Manager class manages the timestamping and WebSocket

15The buffers sent from Python to Bela through the Streamer need
to be decoded and manually assigned to Bela variables in the Bela
code, this is to avoid ambiguity with regards to when (at which
timeframe) each value of the buffer is set for each variable.
16https://github.com/BelaPlatform/Watcher

connection of one or more Watcher objects. Watcher ob-
jects are assigned a WatcherManager instance on creation
and notify it when set() or the = operator overload are
called. If pybela is currently monitoring the variable, the
WatcherManager stores each assigned value in a buffer and
sends it to Python when the buffer is full. Timestamping
is provided by calling WatcherManager’s tick() method.
The Watcher adds a timestamp at the beginning of each
buffer indicating the “tick” value (in the example, the audio
frames elapsed) of the first item of the buffer. For cases in
which the Watcher is not “ticked” at a constant rate, and
in consequence, the data in buffers is not equally spaced in
time, the Watcher offers a “dense” timestamping method
in which each value in the buffer is accompanied by its
timestamp.

4.2 Abstracting asynchronicity

At the beginning of Section 3 we outlined the design
goals of pybela. In particular, goal (2) referred to a simple,
beginner-friendly API that did not require asynchronous
programming knowledge, and goal (3), that the library
was usable in an interactive Python environment (Jupyter
notebooks). The pybela implementation relies on asynchro-
nous code: pybela requests a continuous stream of data,
but besides waiting for the next incoming buffer, it might
need to process the previous one, store it somewhere –
in general, do other tasks while waiting for more data to
arrive. This is a typical I/O-bound operations scenario:
the performance of the program is limited by operations
which are “waiting” for events. In this context, the “data
listener” functions (the functions that wait for the data
buffers to arrive) cannot be programmed synchronously, as
they would block the execution of all other tasks17.

4.2.1 Asynchronicity in Python. In Python, I/O-bound
tasks and asynchronicity are managed with the asyncio18

library. asyncio creates an “event loop” that acts as a
scheduler. The event loop has a queue of tasks that are gen-
erally I/Obound, so they spend most of their time waiting
for an event to happen. While waiting, they yield control
back to the event loop, which in the meantime can run other
coroutines. Coroutines are functions that are declared with
the async keyword and may include the await keyword
in their definition. The await is put in front of a function
which is likely to spend most of its execution waiting for
an event to happen, time in which the control is yield back
to the event loop.

The event loop and async/await syntax for managing
asynchronicity is not a standard practice in physical com-
puting, at least in what relates to real-time sensor and

17Technically, in a multithread scenario the “data listener” functions
could be programmed synchronously, i.e. without using await to
explicitly tell the scheduler where the control can be yield to another
thread. However, a multithreading approach scales poorly (it needs
to create a new thread per task) and involves significant overhead
when context-switching (changing threads) and creating threads, as
each thread requires a stack memory allocation. Multithreading can
also introduce race conditions when multiple threads attempt to
modify the same data.
18https://docs.Python.org/3/library/asyncio.html [accessed
30/01/2025]. asyncio is part of the Python standard library, i.e. the
modules and packages that come pre-installed in Python.

https://github.com/BelaPlatform/Watcher
https://docs.Python.org/3/library/asyncio.html

NIME ’25, June 24–27, 2025, Canberra, Australia Pelinski, Moro and McPherson

(a) Example Bela C++ code

1 float gFrequency;

2 int gButton;

3 // ... some code ...

4 void render(BelaContext* context , void*)

5 {

6 for(unsigned int n = 0; n < context ->audioFrames; ++n)

7 {

8 gButton = digitalRead(context , n, 0);

9 gFrequency = analogRead(context , n, 0) * 1000 + 200;

10 float out = oscillator.process(gFrequency);

11 // ... some code ...

12 }

13 }

(b) Example Bela C++ code after adding the Watcher

1 Watcher <float > gFrequency("frequency"); // uses the default WatcherManager

2 Watcher <int > gButton("button"); // uses the default WatcherManager

3 // ... some code ...

4 void render(BelaContext* context , void*)

5 {

6 for(unsigned int n = 0; n < context ->audioFrames; ++n)

7 {

8 // tick the WatcherManager

9 Bela_getDefaultWatcherManager ()->tick(context ->audioFramesElapsed + n, 0 == n);

10

11 // operator overload calls the Watcher set() method

12 gButton = digitalRead(context , n, 0);

13 gFrequency = analogRead(context , n, 0) * 1000 + 200;

14

15 // "out" can either use the value assigned above or the one set via the pybela "

Controller" class

16 float out = oscillator.process(gFrequency);

17

18 // ... some code ...

19 }

20 }

Figure 1: Example code of using the Watcher in a Bela C++ program.

(a) pybela current implementation

1 streamer.start_streaming ()

2 streamer.wait (30)

3 streamer.stop_streaming ()

(b) pybela usage if coroutines were not wrapped in synchronous functions

1 async def stream_for_30_seconds ():

2 loop = asyncio.get_event_loop ()

3 loop.create_task(streamer.start_streaming_coroutine ())

4 await asyncio.sleep (30)

5 loop.create_task(streamer.stop_streaming_coroutine ())

6 asyncio.run(stream_for_30_seconds)

Figure 2: (a) The pybela current API and (b) the API if the coroutines were exposed.

pybela: a Python library to interface scientific and physical computing NIME ’25, June 24–27, 2025, Canberra, Australia

audio processing19. In such cases, asynchronicity is typi-
cally managed by either multithreading (for tasks which do
not require scaling, e.g. running a given CPU-intensive task
in a block of audio), loop-based polling (i.e. periodically
checking if an OSC message has been received), or with
user-defined callbacks managed by the platform’s API20.
The event loop and the async/await syntax style for man-
aging asynchronicity is also not habitual in deep learning
practices, where code is generally synchronous.

4.2.2 Wrapping coroutines. Figure 2 shows a comparison
of the current API implementation vs. how the same
functionality would look if coroutines were exposed. The
async/await syntax is cumbersome, even for programmers
familiar with asynchronicity. In pybela, we wrapped all
coroutines under synchronous functions to avoid exposing
the asyncio syntax to the user.

asyncio does not allow nested event loops, which pre-
vents running coroutines inside of other coroutines; instead,
they need to be scheduled as tasks (see lines 4 and 6 of the
example in Figure 2). This complicates wrapping corou-
tines in synchronous functions, as their execution context
needs to be considered. The solution involved duplicating
certain methods as both asynchronous (awaiting a result)
and synchronous (immediately returning even if the re-
sult is not ready). This avoided less robust alternatives
such as the nest asyncio21 patch library, which bypasses
asyncio’s prohibition of nested event loops, but introduces
the overhead of creating and closing event loops every time
a coroutine is executed22), and possible inefficient sched-
uling. This patch, however, is still necessary to run the
library in Jupyter notebooks, as this environment runs
its own event loop, conflicting with asyncio’s single event
loop per thread constraint.

5 Benchmarking

In this section we provide measurements of the roundtrip
latency for data travelling from Bela to Python and back
to Bela. Before discussing these results, it is important to
clarify that our goal is not to create an audio streaming
environment with the lowest possible latency, a goal which
would be better served through existing professional audio
interfaces. Instead, the value of pybela lies in its ability
to integrate physical computing with data science work-
flows, facilitating prototyping with real-time sensor data.
Moreover, the data presented in Table 3 corresponds to
the roundtrip latency of buffers filled at audio rate (44.1
kHz), a resolution that exceeds the requirements of many
sensing scenarios.

The roundtrip latency was measured as the time it takes
for a sample of data to travel from Bela to Python and

19It is, of course, a different story in the Internet of Things (IoT)
domain.
20E.g. the Bela API has a setBinaryDataCallback() method to which
the user can pass a function that is called every time a buffer of
data is received through WebSockets.
21nest asyncio is a patch library for asyncio developed by
Ewald de Wit https://github.com/erdewit/nest asyncio [accessed
30/01/2025].
22If the coroutine is executed with ayncio.run(), which would be
the most straightforward way of wrapping a coroutine under a
synchronous function.

back23. Samples are not sent one-by-one but rather col-
lected in buffers (as discussed in Section 4.1) of 1024 sam-
ples24, filled at audio rate. Once full, each buffer is sent
from Bela to Python, which immediately sends it back. In
this scenario, each streamed variable represents a channel:
at every time frame, for n streamed variables, Bela appends
one sample to each of the n buffers.

Measurements were taken across different number of
streamed variables and under varying CPU load conditions.
To force CPU load25, an oscillator bank was added to
the Bela audio thread. Data was transmitted over USB26

and the average latencies were recorded over a 60-second
period. The worst-case (WC) latency reflects the highest
observed value over that period, and the jitter is calculated
as the difference between the latency at percentiles 97.5%
and 2.5%. Tests were conducted on a 2019 MacBook Pro
running macOS Sequoia 15.3.2, with a 2.6 GHz 6-core Intel
Core i7 CPU and 16 GB of DDR4-2667 RAM.

num.
streamed
variables

num.
oscillators
(avg. CPU

load)

mean
latency

(ms)

jitter
(ms)

WC
(ms)

1
0 (37%) 7.6 10.1 33.0

20 (76%) 12.3 23.7 71.8
40 (98%) 43.0 107.7 195.9

5
0 (68%) 25.0 36.2 122.6

20 (90%) 47.7 95.1 221.0
40 (97%) 193.2 375.4 775.3

10
0 (67%) 47.8 65.9 196.6

20 (90%) 93.6 145.7 352.7
40 (97%) 380.9 556.1 998.1

20
0 (66%) 95.9 120.1 292.1

20 (89%) 186.7 254.6 546.0
40 (98%) 754.7 1194.4 2181.6

Table 3: Roundtrip (Bela→ Python→Bela) latency
measurements for varying numbers of streamed
variables and CPU load conditions. Data was trans-
mitted in buffers of 1024 samples, filled at 44.1
kHz, and streamed over USB for a duration of 60
seconds.

As expected, latency increases consistently with the
number of streamed variables. This is due to the fact that
for each additional variable, an extra buffer must be sent
to Python and returned to Bela, scaling the amount of

23The benchmarking code is available in https://github.com/
BelaPlatform/pybela/tree/main/benchmark
24The streamer buffer size is determined by the data type of the
Bela variable and the timestamping mode (sparse or dense, as
discussed in Section 4.1). In this case, we streamed integers with
sparse timestamping (only one timestamp per buffer). The buffer
size of the data sent from Python to Bela is not fixed, and in this
case was set to 1024 to match the size of the buffer sent by Bela.
25The CPU load is calculated as the sum of all threads, running in
Xenomai or Linux mode, scaled by the Xenomai CPU usage.
26All latency measurements reported here were performed using USB
data transmission. For readers interested in how performance may
vary when using WiFi instead, we refer to the evaluation presented
in [32].

https://github.com/erdewit/nest_asyncio
https://github.com/BelaPlatform/pybela/tree/main/benchmark
https://github.com/BelaPlatform/pybela/tree/main/benchmark

NIME ’25, June 24–27, 2025, Canberra, Australia Pelinski, Moro and McPherson

data transferred by the number of variables. The maxi-
mum latency (i.e. worst-case latency) is significantly higher
than the mean, and the jitter values are also relatively
large. This is not uncommon for protocols that are not
specifically optimised for low streaming latency. It was
observed that the latency peaked every 5s, which seems to
suggest a timing behaviour introduced by the desktop OS
or Python’s runtime environment. Beyond the jump from
1 to 5 streamed variables, CPU usage remained relatively
stable across different number of oscillators, though –as ex-
pected– latency continues to increase with more streamed
variables.

6 In context: developing tools for deep
learning in Bela

pybela has been developed within a larger research project
that focuses on facilitating deep learning workflows in-
volving physical computing platforms, in the context of
real-time audio and interaction. Earlier, in Section 2.1.3,
we outlined some of the workflow difficulties specific to em-
bedded AI. In this context, we have developed a series of
resources to support prototyping with deep learning models
and embedded computing platforms. All tools, tutorials,
and examples mentioned in this section are included in the
provided repository27.

In a deep learning pipeline, pybela is of use at two stages:
for capturing a dataset, and, if the model is running in the
computer, for streaming data in real-time between Bela
and the computer. If the model is run directly on Bela
(on-device) instead, we provide an updated toolchain (with
respect to our previous publication [22]) to cross-compile
the Bela inference code. So far, we have not considered on-
device training given the limited computational resources of
the platform. However, recent promising work in embedded
interactive machine learning [13] suggests it could be an
interesting addition. Below, we discuss both inference cases
(on-device and outsourced to the computer).

6.1 Inference on-device

Embedded computers have a significantly limited CPU
capacity when compared to desktop computers. In deep
learning, models are typically run in GPUs, although there
is an increasing interest for lighter models deployed on
laptop or embedded CPUs [20, 24, 33]. There also exist
techniques to compress the size of an existent deep learn-
ing model (pruning) to make it suitable for an embedded
context [7, 10, 26]. In creative contexts, however, a perhaps
more interesting approach is to move away from one-size-
fits-all large models and work with smaller custom datasets
and models instead [30]. This becomes a hard constraint
rather than an artistic choice when working with an em-
bedded platform with limited resources – and arguably a
source for creative inspiration28 [5]. Additionally, many AI
approaches in interactive media are inspired by informa-
tion retrieval techniques and are often directed towards
analysing audio, text or visual data rather than engag-
ing with the embodied aspects of creative practice (some
counterexamples are [9, 12, 15]).

27https://github.com/pelinski/deep-learning-for-bela
28See [14] for a discussion on designing with constraints in the
context of digital musical instruments.

pybela supports this light and custom AI approach by
facilitating the collection of sensor signals dataset from a
Jupyter notebook (or vanilla Python) environment, where
practitioners can prototype with deep learning models
trained on those signals. To avoid toolchain complications
when deploying the models back to the embedded plat-
form, in this case Bela, we have provided a dockerised29

cross-compilation environment which avoids tedious local
installs – only a couple of Docker commands are necessary
to pull the image and create a container. We also provide a
tutorial with an example project. In the tutorial, a Jupyter
notebook is run in the Docker container and all the steps
(dataset collection, model training and export, and cross-
compilation of Bela inference code) happen in the Jupyter
notebook. The tutorial uses Torch as the C++ on-device
inference engine, but we also provide the ONNXRuntime
and TensorFlow Lite libraries compiled for Bela. The exam-
ple project30 in the tutorial uses audio from a microphone
to control a drum synthesiser using onset detection and fea-
ture extraction, which map to synthesis parameter updates
through a multi-layer perceptron model.

6.2 Inference on desktop computer

For situations in which running a deep learning model di-
rectly in the embedded platform might be unfeasible (due
to the computational and/or real-time constraints), or in
which there might be a substantial amount of data process-
ing involved (e.g. expensive filters or adaptive algorithms),
the model inference and additional data processing can be
outsourced to the computer. Streaming the sensor data
from Bela to pybela and back to Bela adds an overhead
which might however be compensated by running the model
in the computer’s higher-spec CPU or GPU, if available.
The output of the model can be sent back to Bela for e.g.
further processing, controlling an actuator, or integrating
into an Eurorack modular system31, or alternatively, to
another software running on the computer (e.g. MaxMSP,
SuperCollider, Processing).

We provide an example project which explores the soni-
fication of the latent space of a number of deep learning
models, all variations of the same architecture. The architec-
ture, a custom Transformer [29] autoencoder, compresses 8
piezo signals into 4 signals. The piezo sensors are attached
to the body of a feedback double-bass32, and the signals are
sent in blocks from Bela to Python. Each block (8 signals,
1024 samples) is passed to the model, which then outputs
a block of 4 signals. The output block can be either sent
back to Bela, which runs integrated in a Eurorack modular
setup or to SuperCollider through OSC. In this project,
we also implemented an algorithm that uses the output of
the model to determine which model should run the next
block’s inference. The algorithm takes into account the
rate of variation and amplitude of the 4 compressed piezo
signals as well as the history of the system to determine if

29Docker (https://www.docker.com/ [accessed 05/02/2025]) is a
tool for packaging applications. It creates isolated environments
with all the necessary libraries to run a given application.
30The example project was originally developed by Jordie Shier.
31Using Pepper, a Eurorack module that allows mounting Bela into
a Eurorack setup (https://learn.bela.io/products/modular/pepper/
[accessed 05/02/2025]).
32This project is an ongoing collaboration with Adam Pultz Melbye
and their Feedback-Actuated Augmented Bass [19].

https://github.com/pelinski/deep-learning-for-bela
https://www.docker.com/
https://learn.bela.io/products/modular/pepper/

pybela: a Python library to interface scientific and physical computing NIME ’25, June 24–27, 2025, Canberra, Australia

there should be a change in model or not. The prototyping
of this algorithm involved a good amount of parameter
tweaking in a rehearsal setting, which would have been
significantly slowed down if it had involved recompiling the
Bela C++ project each time.

7 Conclusion

This paper introduced pybela, a Python library designed to
integrate physical computing and data science workflows by
enabling real-time, bidirectional communication between
the Bela embedded computing platform and Python. We
addressed the “fragmented prototyping” that occurs when
working across physical computing and data-driven work-
flows, caused by their distinct prototyping models and the
lack of efficient and interactive routes to exchange high-
bandwidth real-time data. pybela supports multiple modes
of operation – streaming, monitoring, logging and control-
ling – providing flexibility for diverse applications, from
real-time performance to dataset collection. Moreover, the
pybela implementation abstracts all complexity related to
asynchronous Python programming. Similarly, the modifi-
cations required to use pybela with an existing Bela project
are minimal. Beyond the technical contribution, we provide
tutorials and example projects, which we hope will be of
valuable use for researchers, educators, and practitioners
exploring data-driven approaches on physical computing
environments.

Ethical Standards

Giulio Moro and Andrew McPherson are part of Aug-
mented Instruments Ltd, the company that produces the
Bela platform. Teresa Pelinski’s PhD is also partly sup-
ported by the same company, and part of this work was
conducted during her internship at Bela between April and
September 2023.

pybela has been improved through its implementation
in the authors’ and colleagues’ projects, as well as in work-
shops such as [2, 16]. This work did not involve a formal
human subjects research protocol and therefore did not
require approval from our institution’s ethic board.

Acknowledgments

This research has been supported by Bela (Augmented
Instruments Ltd), the EPSRC UKRI Centre for Doctoral
Training in Artificial Intelligence and Music (EP/S022694/
1), a UKRI Frontier Research (Consolidator) Grant (EP/X0
23478/1, “RUDIMENTS”) and by the Royal Academy of
Engineering under the Research Chairs and Senior Research
Fellowships scheme. The authors would like to also thank
Jordie Shier and Adam Pultz Melbye for their involvement
in the example projects, as well as Adán L. Benito Tem-
prano and Rodrigo Diaz for their contributions in earlier
iterations of the project. The authors also appreciate the
insightful feedback provided by Andrea Martelloni, Chris
Kiefer, Francisco Bernardo, Jordie Shier and the anony-
mous NIME reviewers.

References
[1] Valentin Ackva and Fares Schulz. 2024. ANIRA: An Archi-

tecture for Neural Network Inference in Real-Time Audio
Applications. In 2024 IEEE 5th International Symposium on

the Internet of Sounds (IS2). IEEE, Erlangen, Germany, 1–10.
https://ieeexplore.ieee.org/document/10704099/

[2] Jack Armitage, Victor Shepardson, Nicola Privato, Teresa Pelin-
ski, Adan L Benito Temprano, Lewis Wolstanholme, Andrea
Martelloni, Franco Santiago Caspe, Courtney N. Reed, Sophie
Skach, Rodrigo Diaz, Sean Patrick O’Brien, and Jordie Shier.
2023. Agential Instruments Design Workshop. In AIMC 2023.
The University of Sussex, Falmer, UK. https://qmro.qmul.ac.
uk/xmlui/handle/123456789/91547

[3] Francisco Bernardo, Michael Zbyszyński, Mick Grierson, and
Rebecca Fiebrink. 2020. Designing and Evaluating the Us-
ability of a Machine Learning API for Rapid Prototyp-
ing Music Technology. Frontiers in Artificial Intelligence 3
(April 2020). https://www.frontiersin.org/journals/artificial-
intelligence/articles/10.3389/frai.2020.00013/full

[4] Alan F. Blackwell and Thomas Green. 2003. Notational
Systems—The Cognitive Dimensions of Notations Frame-
work. In HCI Models, Theories, and Frameworks: Toward a
Multidisciplinary Science, John M. Carroll (Ed.). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 103–133.

[5] Margaret A. Boden. 2004 (1991). The Creative Mind: Myths
and Mechanisms (2 ed.). Routledge, London. https://doi.org/
10.4324/9780203508527

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R. Klem-
mer. 2008. Opportunistic Programming: How Rapid Ideation
and Prototyping Occur in Practice. In Proceedings of the
4th International Workshop on End-user Software Engineering
(WEUSE ’08). Association for Computing Machinery, New
York, NY, USA, 1–5. https://dl.acm.org/doi/10.1145/1370847.
1370848

[7] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2020. A
Survey of Model Compression and Acceleration for Deep Neural
Networks. arXiv:1710.09282 [cs] http://arxiv.org/abs/1710.
09282

[8] Jatin Chowdhury. 2021. RTNeural: Fast Neural Inferencing
for Real-Time Systems [Preprint]. arXiv:2106.03037 [eess]
http://arxiv.org/abs/2106.03037

[9] Çağrı Erdem, Ricardo Simionato, Sayed Mojtaba Kar-
basi, and Alexander Refsum Jensenius. 2022. Embod-
ied Perspectives on Musical AI (EmAI) - RITMO Cen-
tre for Interdisciplinary Studies in Rhythm, Time and Mo-
tion. https://www.uio.no/ritmo/english/news-and-events/
events/workshops/2022/embodied-ai/index.html

[10] Philippe Esling, Ninon Devis, Adrien Bitton, Antoine
Caillon, Axel Chemla–Romeu-Santos, and Constance
Douwes. 2020. Diet Deep Generative Audio Mod-
els with Structured Lottery. In Proceedings of the
23rd International Conference on Digital Audio Effects
(DAFx-20). Vienna, Austria. arXiv:2007.16170 [cs, eess, stat]
http://arxiv.org/abs/2007.16170

[11] Nicholas Evans, Behzad Haki, and Sergi Jordà. 2024.
GrooveTransformer: A Generative Drum Sequencer Euro-
rack Module. In Proceedings of the International Conference
on New Interfaces for Musical Expression. Zenodo, 261–265.
https://zenodo.org/records/13904848

[12] Rebecca Fiebrink, Dan Trueman, and Perry R. Cook. 2009.
A Meta-Instrument For Interactive, On-The-Fly Machine
Learning. In Proceedings of the International Conference on
New Interfaces for Musical Expression. Zenodo, Pittsburgh,
PA, United States, 280–285. https://zenodo.org/record/
1177513

[13] Chris Kiefer and Andrea Martelloni. 2024. Musically Embedded
Machine Learning Workshop. In CHIME Annual Conference
2024. The Open University, Milton Keynes, UK. https:
//static1.squarespace.com/static/6227c31a43daf21135453605/
t/6723af17d5a2ce1e889a8d6a/1730391832196/13+Andrea+
Martelloni+and+Chris+Kiefer.pdf

[14] Thor Magnusson. 2010. Designing Constraints: Composing and
Performing with Digital Musical Systems. Computer Music
Journal 34, 4 (Dec. 2010), 62–73. https://direct.mit.edu/
comj/article/34/4/62-73/94484

[15] Charles Patrick Martin, Kyrre Glette, Tønnes Frostad Nygaard,
and Jim Torresen. 2020. Understanding Musical Predictions
With an Embodied Interface for Musical Machine Learning.
Frontiers in Artificial Intelligence 3 (2020). https://www.
frontiersin.org/article/10.3389/frai.2020.00006

[16] Charles Patrick Martin and Teresa Pelinski. 2024.
Building NIMEs with Embedded AI. In Proceedings
of the International Conference on New Interfaces for
Musical Expression. Utrecht, Netherlands. https:
//smcclab.github.io/nime-embedded-ai/

[17] Andrew McPherson, Robert Jack, and Giulio Moro. 2016.
Action-Sound Latency: Are Our Tools Fast Enough?. In
Proceedings of the International Conference on New Interfaces

https://ieeexplore.ieee.org/document/10704099/
https://qmro.qmul.ac.uk/xmlui/handle/123456789/91547
https://qmro.qmul.ac.uk/xmlui/handle/123456789/91547
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2020.00013/full
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2020.00013/full
https://doi.org/10.4324/9780203508527
https://doi.org/10.4324/9780203508527
https://dl.acm.org/doi/10.1145/1370847.1370848
https://dl.acm.org/doi/10.1145/1370847.1370848
https://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
https://arxiv.org/abs/2106.03037
http://arxiv.org/abs/2106.03037
https://www.uio.no/ritmo/english/news-and-events/events/workshops/2022/embodied-ai/index.html
https://www.uio.no/ritmo/english/news-and-events/events/workshops/2022/embodied-ai/index.html
https://arxiv.org/abs/2007.16170
http://arxiv.org/abs/2007.16170
https://zenodo.org/records/13904848
https://zenodo.org/record/1177513
https://zenodo.org/record/1177513
https://static1.squarespace.com/static/6227c31a43daf21135453605/t/6723af17d5a2ce1e889a8d6a/1730391832196/13+Andrea+Martelloni+and+Chris+Kiefer.pdf
https://static1.squarespace.com/static/6227c31a43daf21135453605/t/6723af17d5a2ce1e889a8d6a/1730391832196/13+Andrea+Martelloni+and+Chris+Kiefer.pdf
https://static1.squarespace.com/static/6227c31a43daf21135453605/t/6723af17d5a2ce1e889a8d6a/1730391832196/13+Andrea+Martelloni+and+Chris+Kiefer.pdf
https://static1.squarespace.com/static/6227c31a43daf21135453605/t/6723af17d5a2ce1e889a8d6a/1730391832196/13+Andrea+Martelloni+and+Chris+Kiefer.pdf
https://direct.mit.edu/comj/article/34/4/62-73/94484
https://direct.mit.edu/comj/article/34/4/62-73/94484
https://www.frontiersin.org/article/10.3389/frai.2020.00006
https://www.frontiersin.org/article/10.3389/frai.2020.00006
https://smcclab.github.io/nime-embedded-ai/
https://smcclab.github.io/nime-embedded-ai/

NIME ’25, June 24–27, 2025, Canberra, Australia Pelinski, Moro and McPherson

for Musical Expression. Brisbane, Australia, 20–25. https:
//www.zenodo.org/record/3964611

[18] Andrew McPherson and Victor Zappi. 2015. An
Environment for Submillisecond-Latency Audio and
Sensor Processing on BeagleBone Black. In 138th
Audio Engineering Society Convention. Warsaw, Poland.
http://www.aes.org/e-lib/browse.cfm?elib=17755

[19] Adam Pultz Melbye and Halldór Úlfarsson. 2020. Sculpt-
ing the Behaviour of the Feedback-Actuated Augmented
Bass: Design Strategies for Subtle Manipulations of
String Feedback Using Simple Adaptive Algorithms. In
Proceedings of the International Conference on New Interfaces
for Musical Expression. 221–226. https://zenodo.org/record/
4813328

[20] Sparsh Mittal, Poonam Rajput, and Sreenivas Subramoney.
2022. A Survey of Deep Learning on CPUs: Opportunities
and Co-Optimizations. IEEE Transactions on Neural Networks
and Learning Systems 33, 10 (Oct. 2022), 5095–5115. https:
//ieeexplore.ieee.org/document/9410437

[21] Fabio Morreale, Giulio Moro, Alan Chamberlain, Steve Benford,
and Andrew McPherson. 2017. Building a Maker Community
Around an Open Hardware Platform. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems.
Denver, CO, USA. https://dl.acm.org/doi/10.1145/3025453.
3026056

[22] Teresa Pelinski, Rodrigo Dı́az, Adán L. Benito Temprano, and
Andrew McPherson. 2023. Pipeline for Recording Datasets and
Running Neural Networks on the Bela Embedded Hardware
Platform. In Proceedings of the International Conference on
New Interfaces for Musical Expression. Mexico City, Mexico.
https://www.nime.org/proceedings/2023/nime2023 22.pdf

[23] Teresa Pelinski, Victor Shepardson, Steve Symons, Franco San-
tiago Caspe, Adán L. Benito Temprano, Jack Armitage,
Chris Kiefer, Rebecca Fiebrink, Thor Magnusson, and Andrew
McPherson. 2022. Embedded AI for NIME: Challenges and
Opportunities. In International Conference on New Interfaces
for Musical Expression. Auckland, New Zealand. https://nime.
pubpub.org/pub/rwr2c3zs/release/1

[24] Wolfgang Roth, Günther Schindler, Bernhard Klein, Robert Pe-
harz, Sebastian Tschiatschek, Holger Fröning, Franz Pernkopf,
and Zoubin Ghahramani. 2024. Resource-Efficient Neural Net-
works for Embedded Systems. Journal of Machine Learning
Research 25, 50 (2024), 1–51. http://jmlr.org/papers/v25/18-
566.html

[25] Domenico Stefani, Simone Peroni, and Luca Turchet. 2022.
A Comparison of Deep Learning Inference Engines for Em-
bedded Real-Time Audio Classification. In Proceedings of
the 25th International Conference on Digital Audio Effects
(DAFx20in22). Vienna, Austria, 256–263. https://www.dafx.
de/paper-archive/2022/papers/DAFx20in22 paper 16.pdf

[26] David Südholt, Alec Wright, Cumhur Erkut, and Vesa Välimäki.
2023. Pruning Deep Neural Network Models of Guitar Distor-
tion Effects. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 31 (2023), 256–264. https://ieeexplore.
ieee.org/document/9954902/

[27] Atau Tanaka, Federico Visi, Balandino Di Donato, Martin
Klang, and Michael Zbyszyński. 2023. An End-to-End Musical
Instrument System That Translates Electromyogram Biosignals
to Synthesized Sound. Computer Music Journal 47, 1 (March
2023), 64–84. https://doi.org/10.1162/comj a 00672

[28] Pierre Alexandre Tremblay, Gerard Roma, and Owen Green.
2021. Enabling Programmatic Data Mining as Musicking: The
Fluid Corpus Manipulation Toolkit. Computer Music Journal
45, 2 (June 2021), 9–23. https://doi.org/10.1162/comj a 00600

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention Is All You Need. In Advances
in Neural Information Processing Systems, Vol. 2017-Decem.
5999–6009. https://arxiv.org/abs/1706.03762

[30] Gabriel Vigliensoni and Rebecca Fiebrink. 2025. Data- and
Interaction-Driven Approaches for Sustained Musical Prac-
tices with Machine Learning. Journal of New Music Research
(2025), 1–14. https://www.tandfonline.com/doi/full/10.1080/
09298215.2024.2442361

[31] Federico Visi. 2024. The Sophtar: A Networkable Feed-
back String Instrument with Embedded Machine Learning. In
Proceedings of the International Conference on New Interfaces
for Musical Expression. Zenodo, 142–148. https://zenodo.org/
records/13904810

[32] Johnty Wang, Eduardo Meneses, and Marcelo M Wanderley.
2020. The Scalability of WiFi for Mobile Embedded Sen-
sor Interfaces. In Proceedings of the International Conference
on New Interfaces for Musical Expression. Royal Birmingham

Conservatoire, Birmingham City University, Birmingham, UK.
[33] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. 2019. Bench-

marking TPU, GPU, and CPU Platforms for Deep Learning.
arXiv:1907.10701 [cs, stat] http://arxiv.org/abs/1907.10701

https://www.zenodo.org/record/3964611
https://www.zenodo.org/record/3964611
http://www.aes.org/e-lib/browse.cfm?elib=17755
https://zenodo.org/record/4813328
https://zenodo.org/record/4813328
https://ieeexplore.ieee.org/document/9410437
https://ieeexplore.ieee.org/document/9410437
https://dl.acm.org/doi/10.1145/3025453.3026056
https://dl.acm.org/doi/10.1145/3025453.3026056
https://www.nime.org/proceedings/2023/nime2023_22.pdf
https://nime.pubpub.org/pub/rwr2c3zs/release/1
https://nime.pubpub.org/pub/rwr2c3zs/release/1
http://jmlr.org/papers/v25/18-566.html
http://jmlr.org/papers/v25/18-566.html
https://www.dafx.de/paper-archive/2022/papers/DAFx20in22_paper_16.pdf
https://www.dafx.de/paper-archive/2022/papers/DAFx20in22_paper_16.pdf
https://ieeexplore.ieee.org/document/9954902/
https://ieeexplore.ieee.org/document/9954902/
https://doi.org/10.1162/comj_a_00672
https://doi.org/10.1162/comj_a_00600
https://arxiv.org/abs/1706.03762
https://www.tandfonline.com/doi/full/10.1080/09298215.2024.2442361
https://www.tandfonline.com/doi/full/10.1080/09298215.2024.2442361
https://zenodo.org/records/13904810
https://zenodo.org/records/13904810
https://arxiv.org/abs/1907.10701
http://arxiv.org/abs/1907.10701

	Abstract
	1 Introduction
	2 Background
	2.1 Fragmented prototyping
	2.2 Previous work and existent tools

	3 Features and modes of operation
	3.1 Stream
	3.2 Monitor
	3.3 Log
	3.4 Control

	4 Architecture and implementation
	4.1 The Bela Watcher
	4.2 Abstracting asynchronicity

	5 Benchmarking
	6 In context: developing tools for deep learning in Bela
	6.1 Inference on-device
	6.2 Inference on desktop computer

	7 Conclusion
	Acknowledgments
	References

